3.2023 \(\int \frac{a+b x}{(d+e x)^4 \sqrt{a^2+2 a b x+b^2 x^2}} \, dx\)

Optimal. Leaf size=39 \[ -\frac{a+b x}{3 e \sqrt{a^2+2 a b x+b^2 x^2} (d+e x)^3} \]

[Out]

-(a + b*x)/(3*e*(d + e*x)^3*Sqrt[a^2 + 2*a*b*x + b^2*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.0283149, antiderivative size = 39, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.091, Rules used = {770, 21, 32} \[ -\frac{a+b x}{3 e \sqrt{a^2+2 a b x+b^2 x^2} (d+e x)^3} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*x)/((d + e*x)^4*Sqrt[a^2 + 2*a*b*x + b^2*x^2]),x]

[Out]

-(a + b*x)/(3*e*(d + e*x)^3*Sqrt[a^2 + 2*a*b*x + b^2*x^2])

Rule 770

Int[((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dis
t[(a + b*x + c*x^2)^FracPart[p]/(c^IntPart[p]*(b/2 + c*x)^(2*FracPart[p])), Int[(d + e*x)^m*(f + g*x)*(b/2 + c
*x)^(2*p), x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && EqQ[b^2 - 4*a*c, 0]

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 32

Int[((a_.) + (b_.)*(x_))^(m_), x_Symbol] :> Simp[(a + b*x)^(m + 1)/(b*(m + 1)), x] /; FreeQ[{a, b, m}, x] && N
eQ[m, -1]

Rubi steps

\begin{align*} \int \frac{a+b x}{(d+e x)^4 \sqrt{a^2+2 a b x+b^2 x^2}} \, dx &=\frac{\left (a b+b^2 x\right ) \int \frac{a+b x}{\left (a b+b^2 x\right ) (d+e x)^4} \, dx}{\sqrt{a^2+2 a b x+b^2 x^2}}\\ &=\frac{\left (a b+b^2 x\right ) \int \frac{1}{(d+e x)^4} \, dx}{b \sqrt{a^2+2 a b x+b^2 x^2}}\\ &=-\frac{a+b x}{3 e (d+e x)^3 \sqrt{a^2+2 a b x+b^2 x^2}}\\ \end{align*}

Mathematica [A]  time = 0.0122139, size = 30, normalized size = 0.77 \[ -\frac{a+b x}{3 e \sqrt{(a+b x)^2} (d+e x)^3} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x)/((d + e*x)^4*Sqrt[a^2 + 2*a*b*x + b^2*x^2]),x]

[Out]

-(a + b*x)/(3*e*Sqrt[(a + b*x)^2]*(d + e*x)^3)

________________________________________________________________________________________

Maple [A]  time = 0.003, size = 27, normalized size = 0.7 \begin{align*} -{\frac{bx+a}{3\,e \left ( ex+d \right ) ^{3}}{\frac{1}{\sqrt{ \left ( bx+a \right ) ^{2}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x+a)/(e*x+d)^4/((b*x+a)^2)^(1/2),x)

[Out]

-1/3/(e*x+d)^3/e*(b*x+a)/((b*x+a)^2)^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)/(e*x+d)^4/((b*x+a)^2)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.41629, size = 70, normalized size = 1.79 \begin{align*} -\frac{1}{3 \,{\left (e^{4} x^{3} + 3 \, d e^{3} x^{2} + 3 \, d^{2} e^{2} x + d^{3} e\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)/(e*x+d)^4/((b*x+a)^2)^(1/2),x, algorithm="fricas")

[Out]

-1/3/(e^4*x^3 + 3*d*e^3*x^2 + 3*d^2*e^2*x + d^3*e)

________________________________________________________________________________________

Sympy [A]  time = 0.426063, size = 37, normalized size = 0.95 \begin{align*} - \frac{1}{3 d^{3} e + 9 d^{2} e^{2} x + 9 d e^{3} x^{2} + 3 e^{4} x^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)/(e*x+d)**4/((b*x+a)**2)**(1/2),x)

[Out]

-1/(3*d**3*e + 9*d**2*e**2*x + 9*d*e**3*x**2 + 3*e**4*x**3)

________________________________________________________________________________________

Giac [A]  time = 1.11867, size = 24, normalized size = 0.62 \begin{align*} -\frac{e^{\left (-1\right )} \mathrm{sgn}\left (b x + a\right )}{3 \,{\left (x e + d\right )}^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)/(e*x+d)^4/((b*x+a)^2)^(1/2),x, algorithm="giac")

[Out]

-1/3*e^(-1)*sgn(b*x + a)/(x*e + d)^3